Showing posts with label reptiles. Show all posts
Showing posts with label reptiles. Show all posts

Friday, October 28, 2011

Land Animals & Ecosystems Decimated During the Permian Extinction


To the left. Lystrosaurs escaped the destruction of the Permian catastrophe as did the meter high spore-tree Pleuromeia it is feeding on. Illustration credit: Victor Leshky.

PROVIDENCE, R.I. [Brown University] — The cataclysmic events that marked the end of the Permian Period some 252 million years ago were a watershed moment in the history of life on Earth. As much as 90 percent of ocean organisms were extinguished, ushering in a new order of marine species, some of which we still see today. But while land dwellers certainly sustained major losses, the extent of extinction and the reshuffling afterward were less clear.

In a paper published in the journal Proceedings of the Royal Society B, researchers at Brown University and the University of Utah undertook an exhaustive specimen-by-specimen analysis to confirm that land-based vertebrates suffered catastrophic losses as the Permian drew to a close. From the ashes, the survivors, a handful of genera labeled "disaster taxa," were free to roam more or less unimpeded, with few competitors in their respective ecological niches. This lack of competition, the researchers write, caused vicious boom-and-bust cycles in the ecosystems, as external forces wreaked magnified havoc on the tenuous links in the food web. As a result, the scientists conclude from the fossil record that terrestrial ecosystems took up to 8 million years to rebound fully from the mass extinction through incremental evolution and speciation.

"It means the (terrestrial ecosystems) were more subject to greater risk of collapse because there were fewer links" in the food web, said Jessica Whiteside, assistant professor of geological sciences at Brown and co-author on the paper.

The boom-and-bust cycles that marked land-based ecosystems' erratic rebound were like "mini-extinction events and recoveries," said Randall Irmis, a co-author on the paper, who is a curator of paleontology at the Natural History Museum of Utah and an assistant professor of geology and geophysics at Utah.

The hypothesis, in essence, places ecosystems' recovery post-Permian squarely on the repopulation and diversification of species, rather than on an outside event, such as a smoothing out of climate. The analysis mirrors the conclusions reached by Whiteside in a paper published last year in Geology, in which she and a colleague argued that it took up to 10 million years after the end-Permian mass extinction for enough species to repopulate the ocean — restoring the food web — for the marine ecosystem to stabilize.

"It really is the same pattern" with land-based ecosystems as marine environments, Whiteside said. The same seems to hold true for plants, she added.

Some studies have argued that continued volcanism following the end-Permian extinction kept ecosystems' recovery at bay, but Whiteside and Irmis say there's no physical evidence of such activity.

The researchers examined nearly 8,600 specimens, from near the end of the Permian to the middle Triassic, roughly 260 million to 242 million years ago. The fossils came from sites in the southern Ural Mountains of Russia and from the Karoo Basin in South Africa. The specimen count and analysis indicated that approximately 78 percent of land-based vertebrate genera perished in the end-Permian mass extinction. Out of the rubble emerged just a few species, the disaster taxa. One of these was Lystrosaurus, a dicynodont synapsid (related to mammals) about the size of a German shepherd. This creature barely registered during the Permian but dominated the ecosystem following the end-Permian extinction, the fossil record showed. Why Lystrosaurus survived the cataclysm when most others did not is a mystery, perhaps a combination of luck and not being picky about what it ate or where it lived. Similarly, a reptilian taxon, procolophonids, were mostly absent leading to the end-Permian extinction, yet exploded onto the scene afterward.

"Comparison with previous food-web modeling studies suggests this low diversity and prevalence of just a few taxa meant that links in the food web were few, causing instability in the ecosystem and making it susceptible to boom-bust cycles and further extinction," Whiteside said.

The ecosystems that emerged from the extinction had such low animal diversity that it was especially vulnerable to crashes spawned by environmental and other changes, the authors write. Only after species richness and evenness had been re-established, restoring enough population numbers and redundancy to the food web, did the terrestrial ecosystem fully recover. At that point, the carbon cycle, a broad indicator of life and death as well as the effect of outside influences, stabilized, the researchers note, using data from previous studies of carbon isotopes spanning the Permian and Triassic periods.

"These results are consistent with the idea that the fluctuating carbon cycle reflects the unstable ecosystems in the aftermath of the extinction event," Whiteside said.

Saturday, May 14, 2011

Reptiles, Mammals, and the Triassic Climate

The skull of the procolophonid Hypsognathus 
was found in Fundy basin, Nova Scotia, which 
was hotter and drier when it was part of 
angaea. Mammals, needing more water, chose 
to live elsewhere. Photo Credit: Jessica 
Whiteside, Brown University.
More than 200 million years ago, mammals and reptiles lived in their own separate worlds on the supercontinent Pangaea, despite little geographical incentive to do so. Mammals lived in areas of twice-yearly seasonal rainfall; reptiles stayed in areas where rains came just once a year. Mammals lose more water when they excrete, and thus need water-rich environments to survive. Results are published in the Proceedings of the National Academy of Sciences.

PROVIDENCE, R.I. [Brown University] — Aggregating nearly the entire landmass of Earth, Pangaea was a continent the likes our planet has not seen for the last 200 million years. Its size meant there was a lot of space for animals to roam, for there were few geographical barriers, such as mountains or ice caps, to contain them.

Yet, strangely, animals confined themselves. Studying a transect of Pangaea stretching from about three degrees south to 26 degrees north (a long swath in the center of the continent covering tropical and semiarid temperate zones), a team of scientists led by Jessica Whiteside at Brown University has determined that reptiles, represented by a species called procolophonids, lived in one area, while mammals, represented by a precursor species called traversodont cynodonts, lived in another. Though similar in many ways, their paths evidently did not cross.

“We’re answering a question that goes back to Darwin’s time,” said Whiteside, assistant professor of geological sciences at Brown, who studies ancient climates. “What controls where organisms live? The two main constraints are geography and climate.”

Turning to climate, the frequency of rainfall along lines of latitude directly influenced where animals lived, the scientists write in a paper published this week in the online early edition of the Proceedings of the National Academy of Sciences. In the tropical zone where the mammal-relative traversodont cynodonts lived, monsoon-like rains fell twice a year. But farther north on Pangaea, in the temperate regions where the procolophonids predominated, major rains occurred only once a year. It was the difference in the precipitation, the researchers conclude, that sorted the mammals’ range from that of the reptiles.

Reptile precursor

The skull of the procolophonid Hypsognathus was found in Fundy basin, Nova Scotia, which was hotter and drier when it was part of Pangaea. Mammals, needing more water, chose to live elsewhere.

The scientists focused on an important physiological difference between the two: how they excrete. Mammals lose water when they excrete and need to replenish what they lose. Reptiles (and birds) get rid of bodily waste in the form of uric acid in a solid or semisolid form that contains very little water.

On Pangaea, the mammals needed a water-rich area, so the availability of water played a decisive role in determining where they lived. “It’s interesting that something as basic as how the body deals with waste can restrict the movement of an entire group,” Whiteside said.

In water-limited areas, “the reptiles had a competitive advantage over mammals,” Whiteside said. She thinks the reptiles didn’t migrate into the equatorial regions because they already had found their niche.

The researchers compiled a climate record for Pangaea during the late Triassic period, from 234 million years ago to 209 million years ago, using samples collected from lakes and ancient rift basins stretching from modern-day Georgia to Nova Scotia. Pangaea was a hothouse then: Temperatures were about 20 degrees Celsius hotter in the summer, and atmospheric carbon dioxide was five to 20 times greater than today. Yet there were regional differences, including rainfall amounts.

The researchers base the rainfall gap on variations in the Earth’s precession, or the wobble on its axis, coupled with the eccentricity cycle, based on the Earth’s orbital position to the sun. Together, these Milankovitch cycles influence how much sunlight, or energy, reaches different areas of the planet. During the late Triassic, the equatorial regions received more sunlight, thus more energy to generate more frequent rainfall. The higher latitudes, with less total sunlight, experienced less rain.

The research is important because climate change projections shows areas that would receive less precipitation, which could put mammals there under stress. 

“There is evidence that climate change over the last 100 years has already changed the distribution of mammal species,” said Danielle Grogan, a graduate student in Whiteside’s research group. “Our study can help us predict negative climate effects on mammals in the future.”

Contributing authors include Grogan, Paul Olsen from Columbia University, and Dennis Kent from Rutgers. The National Science Foundation and the Richard Salomon Foundation funded the research.


  • Citation

  • Jessica H. Whiteside, Danielle S. Grogan, Paul E. Olsen, and Dennis V. Kent. 2011. Climatically driven biogeographic provinces of Late Triassic tropical Pangea. PNAS doi:10.1073/pnas.1102473108